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ABSTRACT 

Pulse transformers are often used in pulsed 
power for high voltage generation. Unfortunately, due 
to their transfer characteristics, transformers 
degrade the input pulse (i.e. limit the risetime, 
droop exponentially, etc). For low impedance (less 
than a few tens of Ohms) and long output pulse (on the 
order of a few microseconds) applications, it is 
extremely difficult, if not impossible, to use pulse 
transformers. We describe in this paper pulse forming 
networks ( PFNs) which are droop compensated to make 
the output pulse square for the duration of the input 
pulse. Using this technique, one can design a PFN 
which can deliver constant power to a wide range of 
loads (with the proper transformer load combinations) 
[ 1]. 

The authors have shown in an earlier paper [2] 
that in order to obtain a flat output pulse from a 
transformer, the necessat'y primary current should be 
as shown in Figure 1, and is expressed as 

i 1(t) = [(L2/M)I 2 + (R/M)I 2tJu(t) 

where: 
i 1 ( t) 

I2 

transformer primary current 

magnitude of the secondat'y current 

primary self inductance 

secondary self inductance 

mutual induntance = k*(L 1L2 )112 

load resistance 
unit step function 

( 1 ) 

By the usual Fourier transform and network theory, the 
necessary PFN values can then be expressed 
mathematically as [2,3,4,5,6] 

Lodd 
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4+2(RT/L2) 
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113 

T 
t:T 

Figure 1. Required Transformer Input 

where 
T 
n 

pulse duration 
integer representing the harmonics 

t 

Such a PFN is shown schematically in Figure 2. It was 
also shown that unlike normal PFNs, the DC'PFNs can be 
made to deliver constant power pulses to a wide ran~e 

of loads provided that the dimensionless droop 
parameter term, 2RT/L

2
, remained the same (i.e. 

matched by the transformer-load combinations). The 
direct consequence of which is that DCPFNs can be made 
into Constant Power Sources with the proper 
transformer load combinations. 

For each typical PFN, load impedance ( Z) and 
pulse duration (r) are specified. However, an added 
scaling parameter is necessary for the DCPFN. This is 
the secondary self inductance of the transformer. 
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Fi~ure 2. DCPFN Driven Pulsed Transformer 

Example of the DCPFN 

Suppose it is desirable to generate 100GW pulses 
for· 2.5J.ls, with loads ranging from 1.6 Ohms to 10 
Ohms. It is possible to do so by having the proper 
pulse transformer, described in Table 1, or any of 
the transformer load combinations tabulated in Table 2 
[1,2] which utilize the DCPFN values of Table 3. The 
simulated output for the case of the 10 Ohm load (1MV, 
100GW) is shown in Figm·e 3 [7]. As described 
earlier, this 100GW pulse can be delivered to any of 
the transformer load combinations of Table 2. 

Efficiency Considerations 

A price is paid for the versatility of DCPFNs 
however, since the DCPFN efficiency 

'I = ( 3) 

is decreased by the droop parameter term. Normalized 
coefficients of the DCPFN for efficiencies ranging 
from 50% to 100% in increments of 10% were derived and 
tabulated in Table 4. The DCPFN would make an 
excellent laboratory developmental device since it 
affords the versatility of being able to drive a wide 
range of loads with a single pulse forming network. 

CONCLUSION 

We have shown that constant power, long output 
pulses can be generated for a wide range of loads from 
a DCPFN. We have also presented the normalized 
coefficients for a Type C DCPFN for efficiencies 
ranging from 50% to 100%, which may be converted to 
the other types of PFNs via network transformations 
[ 3]. 
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Table 1 
Pulse Transformer Parameters 

Primary Winding 
Inner Radius 26.58 em 
Thickness 0.3175 em 
Width 105.0 em 
Inductance 219.2 nH 

Secondary Winding 
Number of Turns 10 turns 
Inner Radius 25.00 em 
Thickness 0.0508 em 
Pitch 0.1575 em 
Width 100.0 em 
Inductance 20.76 J.lH 

Coupling 
Coefficient 0.9641 
Mutual Inductance 2.056 f../H 

Table 2 
Possible Transformer-Load Combinations 

Turns Ratio Secondary Coupling Load 
Inductance Coefficient Resistance 

1:10 20.76 J.lH 0.9641 10.0 fl 
1:9 16.76 f..IH 0.9663 8.1 fl 
1:8 13.20 f..IH 0.9685 6.4 fl 

1: 7 10.08 J.lH 0.9703 4.9 fl 
1:6 7.38 J.lH 0.9726 3.6 fl 
1:5 5.11 J.lH 0.9748 2.5 fl 
1:4 3.26 f../H 0.9771 1.6 fl 

Table 3 
100 GW/250 KJ DCPFN Parameters (+/- 100 KV CHARGE) 

Component Scaled Values 
C1 16.23 J.lF 
L1 39.00 nH 
C2 1. 53 J.lH 
L2 103.80 nH 
C3 1. 80 J.lF 
L3 39.00 nH 
C4 380.00 nF 
L4 103.80 nH 
C5 650.00 nF 
L5 39.00 nH 
C6 170.00 nF 
L6 103.80 nH 
C7 332.50 nF 
L7 39.00 nH 
C8 95.00 nF 
L8 103.80 nF 
C9 200.00 nF 
L9 39.00 nH 
ClO 60.00 nF 
L10 103.80 nH 
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Figure 3. 100 GW, 0.25 MJ Pulse 

Table 4 
Normalized Droop Compensated Pulse Forming Network Coefficients 

Efficiency Values 
Components 50% 60% 70% 

Cl 810.6E-3 675.5E-3 579.0E-3 
Ll 125.0E-3 150.0E-3 175.0E-3 
C::! 101.3E-3 675.5E-4 434.2E-4 
L2 250.0E-3 375.0E-3 58~1. 3E-3 
C3 900.6E-4 750.5E-4 643.3E-4 
L3 125.0E-3 150.0E-3 175.0E-3 
C4 25~l. 3E-4 168.9E-4 108.6E-4 
L4 250. OE<l 375.0E-3 583.3E-3 
C5 324.2E-4 270.2E-4 231.6E-4 
L5 125.0E-3 150. OE-:3 175.0E-3 
C6 112. 6E-4 750.5E-5 482.5E-5 
L6 250.0E-3 375.0E-3 583. 3E-:l 
C7 165.4E-4 137.9E-4 118.2E-4 
L7 125.0E-3 150.0E-3 175.0E-3 
CB 633.3E-5 422.2E-5 271. 4E-5 
L8 250.0E-3 375.0E-3 58:.l. 3E-3 
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103.4E-4 919.0E-5 827.1E-5 
200.0E-3 225.0E-3 250. OE-:l 
158.3E-5 704.0E-6 NA 
100. OE-2 225.0E-2 NA 

l4]. D.G. Ball and T.R. Burkes, "PFN Design For 
Time-varying Load," Proceedings of the Twelfth 
(12th) Pulse Power Modulator Symposium, February 
1976, Buffalo, NY, pp. 156--162. 

[5]. R.M. Roark, et al, "Pulse Forminll; Networks with 
Time-Varying or Nonlinear Resistive Loads," 
Proceedings of the Thirteenth (13th) Pulse Power 
Modulator Symposium, June 1978, Buffalo, NY, pp. 
46--51. 

[6]. E. Kreyszig, Advanced Engineering Mathematics. 
Fourth Edition, John Wiley & Sons, Inc., Ney 
York, 1979. 

[7]. MICRO-CAP II, Spectrum Software, 1021 S. Wolfe 
Rd., Sunnyvale, CA. 


